
  

Lecture II
Data Types

● Numbers
● Lists & Tuples
● Strings
● Byte Arrays
● Sets
● Dictionaries
● Truth & Nothingness



  

Numbers

● int: Plain integers
● long: Arbitrary-length integers.
● float: Floating point numbers.
● complex: Complex numbers.



  

Numbers - Integers

● Literals: 789, -100, +912, 0b101, 0o12, 012, 0xAB4, -0x2B, 12L
● Math, bitwise and comparison operators:

– Same as C with some extras.

– ** is the power operator.
● 7 ** 2 = 49 2 ** 10 = 1024

– // is the same as /.

● When plain integers exceed size, they are 
automatically converted to long integers.



  

Numbers - Floats

● Literals: 0.0, 5.123, 6., +1.24, -945.2, 1.2e+78, 1.2e-78
● Math and comparison operators:

– Same as C with some extras.

– ** is the power operator.
● 9 ** 1.5 = 27 0.5 ** 2 = 0.25

– // is "whole number division".
● (x // y) == floor(x / y)
● 2.0 // 0.5 = 4.0 2.0 // 0.55 = 3.0

● No bitwise operators.
● Limited precision, same as a double in C.



  

Lists & Tuples

● Lists and tuples are both sequence of arbitrary 
items.

● The only difference is that lists are mutable, 
while tuples are immutable.

● Both are implemented internally as arrays of 
pointers.



  

List & Tuple Literals

● List literals are defined using square brackets:
– []

– [1]

– [1, 2]

– ['abc', 4, 'x', [], [2, 'qwe']]

● Tuple literals are defined using parentheses:
– ()

– (1,)

– (1, 2)

– ('abc', 4, 'x', [], [2, 'qwe'], (5, 1), ())



  

Indexing - I

● Lists and tuples are indexed by integers, the 
same way as C arrays.

– x = [6, 7, 8]

x[0] will return 6.
x[1] will return 7.
x[2] will return 8.

● Indices can be negative, to count in reverse.
– x = [6, 7, 8]

x[-1] will return 8.
x[-2] will return 7.
x[-3] will return 6.



  

Indexing - II



  

Slicing

● Portions of lists and tuples can be accessed 
using "slicing".

● Slicing is taking a part of the list or tuple that 
consists of several items.

● Slices are defined by start, end, and optional 
step, separated by colons.

● Start and end are any valid indices.
● Step is an integer specifying the distance 

between each two consecutive indices.



  

Slicing Example - I

>>> x = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

>>> x[1:3]
['b', 'c']

>>> x[0:3]
['a', 'b', 'c']

>>> x[:3]
['a', 'b', 'c']

>>> x[3:]
['d', 'e', 'f', 'g', 'h', 'i', 'j']

>>> x[2:8]
['c', 'd', 'e', 'f', 'g', 'h']



  

Slicing Example - II

>>> x[2:8:2]
['c', 'e', 'g']

>>> x[2:8:1]
['c', 'd', 'e', 'f', 'g', 'h']

>>> x[2:8:3]
['c', 'f']

>>> x[2:8:-2]
[]

>>> x[8:2:-2]
['i', 'g', 'e']

>>> x[::-1]
['j', 'i', 'h', 'g', 'f', 'e', 'd', 'c', 'b', 'a']



  

List & Tuple Operators

● + concatenates lists and tuples.

– [4, 5, 6] + [1, 2, 3] → [4, 5, 6, 1, 2, 3]

– (5, 6) + (3, 5, 0) → (5, 6, 3, 5, 0)
● * repeats the list/tuple the specified number of times.

– (5, 6) * 3 → (5, 6, 5, 6, 5, 6)

– [1, 2, 3] * 2 → [1, 2, 3, 1, 2, 3]
● in checks whether an item is contained in a list/tuple.

– 3 in (6, 2, 3, 9, 4) → True



  

List & Tuple Length

● len(x) measures the length of the sequence.

– len([4, 5, 6]) → 3

– len((5, 6)) → 2

– len((3,)) → 1

– len([5]) → 1

– len(()) → 0

– len([]) → 0



  

List & Tuple Methods

● s.index(x) returns the first position of x in s.

– (4, 5, 6).index(5) → 1

– (4, 5, 6).index(4) → 0

– (4, 5, 6).index(8) → ERROR
● s.count(x) returns the number of times x occurs in s.

– (4, 5, 6).count(5) → 1

– (4, 5, 5, 2, 5, 7).count(5) → 3

– (4, 2, 6).count(5) → 0



  

List Modification

● Unlike tuples, lists can be modified "in-place", 
i.e. by applying changes to an existing list, 
instead of creating a new list with the changes.

● List elements and slices can be assigned to.
● Parts of the list can be deleted.
● New items can be inserted into the list.
● The list can be sorted, reversed, etc.



  

List Item Assignment

● Assigning to individual elements:
– x = [1, 2, 3]

x[1] = 8

● Assigning to continuous slices:
– x = [1, 2, 3, 4, 5]

x[1:3] = [9, 9, 9, 9]

● Assigning to disjunct slices:
– x = [1, 2, 3, 4, 5, 6, 7, 8, 9]

x[1:6:2] = [0, 0, 0]

x → [1, 8, 3]

x → [1, 9, 9, 9, 9, 4, 5]

x → [1, 0, 3, 0, 5, 0, 7, 8, 9]



  

List Item Removal - I

● The del operator can be used to remove single 
elements and slices:

– x = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']

del x[3]

x → ['a', 'b', 'c', 'e', 'f', 'g', 'h', 'i']
del x[2:5]

x → ['a', 'b', 'g', 'h', 'i']



  

List Item Removal - II

● The remove method removes an element given 
its value (rather than its position):

– x = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']

x.remove('f')

x → ['a', 'b', 'c', 'd', 'e', 'g', 'h', 'i']

● The pop method removes an element given its 
position and returns the removed item:

– x = ['a', 'b', 'c', 'd']

y = x.pop(2)

y → 'c'        x → ['a', 'b', 'd']



  

List Item Addition - I

● The append method appends an item at the end 
of a list:

– x = ['a', 'b', 'c', 'd']

x.append(42)

x → ['a', 'b', 'c', 'd', 42]

● The insert method inserts an item at a 
particular position in the list:

– x = ['a', 'b', 'c', 'd']

x.insert(2, 42)

x → ['a', 'b', 42, 'c', 'd']



  

List Item Addition - II

● The extend method extends the list with the 
contents of another list:

– x = ['a', 'b', 'c', 'd']

x.extend([2, 5, 6])

x → ['a', 'b', 'c', 'd', 2, 5, 6]



  

List Sorting

● The sort method sorts the list:
– x = ['a', 'c', 'd', 'b']

x.sort()

x → ['a', 'b', 'c', 'd']

– x = ['a', 'c', 'd', 'b']

x.sort(reverse=True)

x → ['d', 'c', 'b', 'a']

● Advanced sorting possible, but more 
complicated.



  

List Reversion

● The reverse method reverses the list:
– x = ['a', 'c', 'd', 'b']

x.reverse()

x → ['b', 'd', 'c', 'a']



  

Strings

● Strings are sequence of characters or bytes 
usually used to represent text.

● Ordinary strings are sequences of bytes.
● "Unicode" strings are sequences of 

characters. Each character may be 
represented by multiple bytes.

● Unicode strings are useful for non-English text.
● Strings are immutable: all operations on them 

create new strings.



  

String Literals - I

● Several ways to define literal strings:
– Single-line strings: 'abc', "abc"

– Multi-line strings:
● '''first line
...
last line'''

● """first line
...
last line"""

● The value of a string does not depend on how 
the literal is written. This is just for readability.



  

String Literals - II

● Special characters are represented using the 
same escape codes as in C.

– 'first line\nsecond line'

– 'first column\tsecond column'

– '\x61\x62\x63'

– 'some \'quoted\' text and a slash: \\'

– "more \"quoted\" text."

● String literals prefixed with an r or R are "raw" 
string, which don't interpret escape codes.

– r'first line\nstill the same line'



  

Unicode String Literals

● Unicode string literals are prefixed with a 
lowercase or uppercase U, and are treated 
character-by-character rather than byte-by-
byte:

– x = 'العربية'

y = u'العربية'

x[0] → '\xd8'              y[0] → u'\u0627' = 'ا'



  

Basic String Operations

● Strings are tuples of bytes/characters and 
behave similarly.

● The addition and multiplication operators are 
shared.

● The indexing and slicing syntax is the same.



  

String Functions - I

● Search functions:
– find(x) & rfind(x)
– index(x) & rindex(x)
– count(x)

– startswith(x) & endswith(x)



  

String Functions - II

● Case conversion functions:
– lower()

– upper()

– capitalize()

– title()

– swapcase()



  

String Functions - III

● Predicate functions:
– islower(), isupper() & istitle()

– isspace()

– isalpha()

– isdigit()

– isalnum()



  

String Functions - IV

● Spacing functions:
– lstrip(), rstrip() & strip()

– ljust(), rjust() & center()

– zfill()

– expandtabs()



  

String Functions - V

● Splitting and joining functions:
– split() & rsplit()

– partition() & rpartition()

– splitlines()

– join(x)



  

String Functions - VI

● Replacement function:
– replace(x, y)



  

String Functions - VII

● Encoding and decoding functions:
– encode(x)

– decode(x)



  

Byte Arrays

● A bytearray is a mutable string.
● Byte arrays support item and slice assignment.
● Byte arrays have all the methods of strings 

and the following methods of lists:
– pop()

– remove(x)

– insert(x, y)

– extend(x)

– append(x)

● No special literal syntax, so use bytearray(...).



  

Sets

● A set is an unordered group of unique items.
● Sets are implemented in Python using 

"hashing".
● Hashing is a technique of storing immutable 

objects for fast retrieval. It calculates a semi-
unique number ("hash") for an object and uses 
it internally as an array index.

● Hashing does not work on mutable objects 
because when the object is altered, its hash 
no longer matches the original.



  

Sets vs Lists

Lists Sets

Order Matters Unordered

Items may repeat Items are unique

Can store any object Can store only immutable 
objects

Slow search Extremely fast search

Implemented as an array of 
pointers

Implemented as a hash table



  

Set Literals

● No special syntax for set literals in Python 2.x. 
Usually displayed as set([...]).

● A set is created by passing a list or tuple to the 
set() constructor:

– x = set([1, 2, 3, 2])

x → set([1, 2, 3])

– y = set(('abc', (1, 2, 3), 9))

y → set(['abc', (1, 2, 3), 9])



  

Set Operators

● Sets support the classic mathematical set 
operators:

– & : intersection.
– | : union.
– ^ : symmetric difference.
– - : difference.

● Less/More operators compare set size, not contents.

● Equality/Inequality operators compare set contents.



  

Set Functions - I

● Adding and removing elements:

– add(x): adds an element.
– discard(x): removes the element x from the 

set.
– remove(x): like discard(x), but if x is not in the 

set, raise an error.
– pop(): remove and return an arbitrary 

element.
– clear(): removes all elements.



  

Set Functions - II

● Predicates:

– isdisjoint(x): returns whether two sets share 
no elements.

– issubset(x): returns whether x is a subset of 
the set.

– issuperset(x): returns whether x is a superset 
of the set.



  

Set Functions - III

● Set operations:

– union(x) & update(x):
● same as s | x & s |= x respectively.

– intersection(x) & intersection_update(x):
● same as s & x & s &= x respectively.

– symmetric_difference(x) & 
symmetric_difference_update(x):

● same as s ^ x & s ^= x respectively.
– difference(x) & difference_update(x):

● same as s - x & s -= x respectively.



  

Frozen Sets

● Since sets can be modified in place (e.g. by adding 
new element), they are mutable.

● Since sets are mutable, you can't have sets of sets.

● To solve this, you'll have to use a frozenset.

● A frozenset is much the same as an ordinary set, but 
once created, it cannot be altered.

● frozenset object do not have element adding/removing 
methods or any of the four *update() methods.



  

Dictionaries

● A dictionary is a mapping from a set of keys to a 
group of values.

● Also called "associative arrays", "maps" or "hash 
tables" in other languages.

● Each key, value pair is called an "item".

● Implemented the same way as sets, except for each 
set item, there is a related object of arbitrary type.

● Notable for efficiency and flexibility.

● Keys must be immutable objects, while values can 
be anything.



  

Dictionary Literals

● Dictionaries are defined using braces, items are 
separated by commas, each key and value are 
separated a colon:

– {'calculus': 78, "arabic": 63, 'C': 80, 'C++': 91}

– {42: 'the answer',

 'hello': 'world',

 (9, 8, 7): '!',

 (1, 'a'): ['abc', 1.23],

 3.15169: 'pi'}

● Can also be constructed by calling dict:
– dict(calculus=78, arabic=53, C=96)



  

Dictionary Access

● Dictionaries are indexed with square brackets, the 
same way as sequence types:

– x = {'calculus': 78, "arabic": 63, 'C': 80, 'C++': 
91}

x['C++'] → 91

x['arabic'] → 63

x['statistics'] → ERROR

● Slicing does not make sense for dictionaries, as 
values are unordered, so it is not supported.



  

Dictionary Modification

● The values of dictionary items are added and 
modified by assigning to an index:

– x = {'a': 1, 'b': 2, 'c': 3}

x['a'] = 50

x → {'a': 50, 'b': 2, 'c': 3}

x['x'] = 'hello'

x → {'a': 50, 'b': 2, 'c': 3, 'x': 'hello'}

● Items can be deleted using the del operator:
– del x['b']

x → {'a': 50, 'c': 3, 'x': 'hello'}



  

Dictionary Functions - I

● The has_key(x) method checks whether a key exists in 
the dictionary:

– x = {'a': 9, 'b': 8, 'c': 'q'}

x.has_key('a') → True
x.has_key('t') → False
x.has_key('q') → False

● The in operator works identically to has_key(x):
– x = {'a': 9, 'b': 8, 'c': 'q'}

'a' in x → True
't' in x → False
'q' in x → False



  

Dictionary Functions - II

● The pop(x) method removes an item given its key and 
returns its value:

– x = {'a': 9, 'b': 8, 'c': 'q'}

y = x.pop('a')
y → 9 x → {'b': 8, 'c': 'q'}

● The popitem() method removes and returns an 
arbitrary item:

– x = {'a': 9, 'b': 8, 'c': 'q'}

y = x.popitem()
y → ('b', 8) x → {'a': 9, 'c': 'q'}



  

Dictionary Functions - III

● The clear() method removes all items from the 
dictionary:

– x = {'a': 9, 'b': 8, 'c': 'q'}

x.clear()
x → {}

● The update(x) method merges a new dictionary into an 
existing one:

– x = {'a': 9, 'b': 8, 'c': 'q'}
y = {'m': 6, 'b': 1}

x.update(y)
x → {'a': 9, 'b': 1, 'm': 6, 'c': 'q'}



  

Dictionary Functions - IV

● The keys(), values() and items() methods each return a 
list of the dictionary's keys, values or items 
respectively in arbitrary order:

– x = {'a': 9, 'b': 8, 'c': 'q'}

x.keys() → ['c', 'a', 'b']
x.values() → [9, 'q', 8]
x.items() → [('b', 8), ('a', 9), ('c', 'q')]

● The iterkeys(), itervalues() and iteritems() methods 
are similar to the above but return iterators rather 
than lists (more about iterators later).

● All the above methods are useful in for loops.



  

Truth & Nothingness

● The built-in symbol None is used to represent 
nothingness, or the lack of value. It is similar to "null" 
in other languages.

● Python has a bool type to represent Boolean values.

● Boolean objects take of of two values, True and False.

● When used in a Boolean context (e.g. as a 
condition), non-Boolean values are converted to 
Boolean ones.



  

Truth of Non-Booleans

● The following values are False in Boolean contexts:

– None

– 0 of any numeric type.

– Any object x for which len(x) = 0. These 
include:

● Empty sequences: [], (), "", 
bytearray('').

● Empty sets: set([]), frozenset([]).
● Empty dictionaries: {}.
● Instances of classes that define length 

whose length is zero.
● Everything else is True.



  

Boolean Operations

● The three well-known Boolean operations are carried 
out in Python using the operators and, or and not.

– True and False → False

– (True or False) and True → True

– not True or not False → True

● The and and or operators are both "short-circuited". 
They don't evaluate the second operand unless 
necessary:

– f() and g() will not call g() if f() is g() if False.
– f() or g() will not call g() if f() is g() if True.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

